

Energy transition in Italy

Challenges and opportunities in the European context

Fabio Bulgarelli Seeril Conference 18 Maggio 2022

Why energy transition? What is energy transition for?

Energy transition is not just a matter of climate change and environmental policies, but it is also an answer to energy price soaring as well as our energy dependence

What does energy transition mean?

Energy transition is not only about renewables. Energy transition means renewables and electrification of final energy consumption

How are we doing with energy transition?

Current RES development and electrification growth rate are still very slow, we are quite far away from energy transition targets

What do we really need to do to achieve energy transition?

We need to speed up permitting processes for renewables, networks and storage and be more courageous on policies for the promotion of final energy consumption electrification

Why energy transition? What is energy transition for?

Not just to neutralise climate change and global warming but also a crucial move to achieve more liveable cities, affordable energy prices and energy independence.

World population in urban and rural areas (n.)**

Rural areas Urban areas

Italy natural gas consumption by country-of-origin 2021

Energy transition gives us a chance to change this situation. Pushing renewables and electrification gives us the chance to reach the environmental targets, increase our energy independence and reduce energy prices

What does energy transition mean?

Energy transition is not only about renewables. Energy transition means renewables and electrification of final energy consumption $\begin{bmatrix} 35\% \\ 2019 \end{bmatrix} \begin{bmatrix} 2030 \\ 2030 \end{bmatrix} \begin{bmatrix} 21 \\ 2019 \end{bmatrix} \begin{bmatrix} 21 \\ 21 \end{bmatrix}$

New Fit-for-55 policy scenario

Wind Solar

Expected benefits from electrification

	ADDITIONAL ELECTRICAL CONSUMPTION	GAS/OIL SAVING		CO ₂ SAVING	
		Best case*	Worst case**	Best case*	Worst case**
1 mln Heat Pumps vs 1 mln Gas Boilers	+1,9 TWh	0,8 bln m ³ gas (8 TWh savings in primary energy from fossil fuels)	0,4 bln m³ gas (4 TWh savings in primary energy from fossil fuels)	1,6 Mton CO ₂	0,8 Mton CO ₂
1 mln EVs vs 1 mln Internal Combustion Vehicles	+2,1 TWh	730 mln of litres of gasoline (6,5 TWh savings in primary energy from fossil fuels)	N/A (2,3 TWh savings in primary energy from fossil fuels)	1,6 Mton CO ₂	0,8 Mton CO ₂
· • · · · · · · · · · · · · · · · · · ·					
1 mIn Electric Cookings vs 1 mIn Gas Cookings	+0,5 TWh	94 mln m ³ gas (0,9 TWh savings in primary energy from fossil fuels)	Comparable gas needs	0,2 Mton CO ₂	Comparable emission

The electric vector – with RES - is the option to decarbonize the economy, except for the hard-to-abate sectors. This is the reason why it is necessary to fully electrify the residential sector and fully switch to electric mobility

How are we doing with energy transition?

Observed RES evolution in Italy and 2030 targets (GW)

 Very slow growth between 2013 and 2021 (annual increases in installed capacity of less than 1 GW/year)

 Need to promote the construction of about 65 GW of (annual increases in installed capacity of about 7,5 GW/year)

Heat pumps stock in Italy (MIn)

Passenger car registration in Italy (MIn)

30 million residential houses

Just 1,3 mln heat pumps currently installed as main heating and cooling system

Still **19 bln m3** of **gas consumption** for **residential** appliances*

In 2021 about 1.5 mln of new passenger car registrations

In 2021 just **67,000** of new **full electric cars registration** (5% of total new passenger car registration) We need to speed up the permitting processes for renewables, networks and storage

The government has given a strong impulse during the last year, but it is a path still in progress and we really hope to see the results. Finally even European commission Is pushing a lot on this topic, asking member states to simplify the authorization process

We need to be **more courageous on** policies for the promotion of **electrification of final energy consumption**

The "Fit for 55" package states that by 2035 no fuel cars must be sold any more and by 2030 all the new buildings should be zero-net emission buildings: TOO LATE, TOO SHY

TSO perspective

- RES development and final consumption electrification mean looking after the planet but also energy independence and price reduction
- Current RES development and electrification growth rate are still very slow
- Several system actions must be taken to achieve the energy transition (relaxing permitting processes and fostering electricity vector)

From a TSO perspective, 2030 and 2050 targets are achievable, but a mandatory roadmap with concrete milestones and a sustainable path shall be defined, promoting the right investments on network, storage and RES

